Conceptual Data Modeling using the (E)ER model an
UML Class Diagram

11 ﬁ; J
]‘) -
Principles of Database| p H with the i 1
i on to u and apply the fundamental comtpts of Wy
databdse design‘and modeling, database systems; data storage, and the'evolving world
of data warehousmg, governance and more. Designed for those studying datal?se
for or science, this i
textbook has a well-| ba|anced tbeory practice focus and covers the essential tapics,
from d d: ies up to recent trends like Big Data, NoSQL, and
analytics. On-going case studies, anI down boxes that reveal deeper insights on key,
topics, retention questions at the end of every section of a chapter, and connections

boxes that show the i b hroughout the text are included to
provide the practical tools to get started in database management.

WILFRIED LEMAHIEU
SEPPE VANDEN BROUCKE
BART BAESENS

PRINCIPLES OF
DATABASE

MANAGEMENT

THE PRACTICAL GUIDETO STORING. MANAGING
AND ANALYZING BIG AND SMALL DATQ’

SNSave ONY
v NAHYIWAT

I1IN0YE NIANYA

2T L e

s S AN S

+

=
¥

L
o
=
rm
w
(=
-

KEY FEATURES INCLUDE:

= Full-color illustrations throughout the text.

* Extensive coverage of important trending topics, including data warehousing, business
intelligence, data integration, data quality, data governance, Big Data and analytics.
An online playground with diverse environments, including MySQL for querying;
MongoDB; Neod4j Cypher; and a tree structure visualization environment.

Hundreds of examples to illustrate and clarify the concepts discussed that can be §
reproduced on the book’s companion online playground. -
Case studies, review questi p and ises in every chapter.

Additional cases, problems and exercises in the appendix.

INIW3IVNVIN 3SVE

Online Resources
www.cambridge.org/

Instructor’s resources
M Solutions manual

M Code and data for examples CAMBRIDGE
UNIVERSITY PRESS
www.cambridge.org

ISBN 97
Cover illustration: ©Chen Hanquan / DigitalVision / Getty Images.
Cover design: Andrew Ward

9"781107"'186125">

www.pdbmbook.co |

http://www.pdbmbook.com/

Overview

Phases of Database Design

Entity Relationship (ER) model

Enhanced Entity Relationship (EER) model
UML Class Diagram

Phases of Database Design

Business
process

l

Requirement collection | —— Database requirements

and analysis
Conceptual

design N Conceptual data model

DBMS-independent

DBMS-specific

Logical design — Logical data model

/

Physical design —— Internal data model

Entity Relationship (ER) model

Entity Types

Attribute Types
Relationship Types

Weak Entity Types

Ternary Relationship Types
Examples of the ER model
Limitations of the ER model

Entity Types

* Entity type represents a business concept with an
unambiguous meaning to a particular set of users

— Examples: supplier, student, product or employee

* Entity is one particular occurrence or instance of
an entity type

— Examples: Deliwines, Best Wines and Ad Fundum are
entities from the entity type supplier

SUPPLIER

Attribute Types

» Attribute type represents a property of an entity type.

— Example: name and address are attribute types of the entity
type supplier

e Attribute is an instance of an attribute type

ATTRIBUTE TYPE
SUPPLIER / l \\

SUPNR | SUPNAME SUPADDRESS SUPCITY SUPSTATUS
|21 Deliwines 240, Avenue of the Americas | New York 20
32 Best Wines 660, Market Street San Francisco | 90
J 137 Ad Fundum 82, Wacker Drive Chicago 95
52 Spirits & co. 928, Strip Las Vegas NULL
68 The Wine Depot | 132, Montgomery Street San Francisco | 10
|69 w_ |Vinos del Mundo | 4, Collins Avenue Miami 92
AN N\ / A

ATTRIBUTES /

Attribute Types

SUPPLIER

Attribute Types

Domains

Key Attribute Types

Simple versus Composite Attribute Types
Single-Valued versus Multi-Valued Attribute Types
Derived Attribute Type

Domains

A domain specifies the set of values that may be
assigned to an attribute for each individual entity

— Example: gender: male and female

e A domain can also contain null values

— null value: value is not known, not applicable or not
relevant

* Domains are not displayed in an ER model

Key Attribute Types

* A key attribute type is an attribute type whose values are
distinct for each individual entity

— Examples: supplier number, product number, social security
number

* A key attribute type can also be a combination of
attribute types

— Example: combination of flight number and departure date

STATUS DATE OF

SUPPLIER

Simple versus Composite Attribute Types

 Asimple or atomic attribute type cannot be further divided into
parts

— Examples: supplier number, supplier status

* A composite attribute type is an attribute type that can be
decomposed into other meaningful attribute types

— Examples: address, name

address SUPPLIER

date of birth

Single-Valued versus Multi-Valued Attribute Types

* Asingle-valued attribute type has only one value for a particular
entity

— Examples: product number, product name

A multi-valued attribute type is an attribute type that can have
multiple values

— Example: email address
Corsrame > Clostrame >
o>

SUPPLIER

date of birth

Derived Attribute Type

* A derived attribute type is an attribute type which
can be derived from another attribute type

— Example: age

address SUPPLIER

S_———-

Relationship Types

Definition

Degree and Roles
Cardinalities

Relationship Attribute Types

Definition

* Arelationship represents an association between two or
more entities

* Arelationship type then defines a set of relationships
among instances of one, two or more entity types

SUPPLIER

sup-
— SUPPLIES
up

PRODNR prodiype

PRODUCT

available_quantity

Degree and Roles

 The degree of a relationship type corresponds to the number of
entity types participating in the relationship type
— Unary: degree 1, binary: degree 2, ternary: degree 3
* The roles of a relationship type indicate the various directions that
can be used to interpret it

SUPPLIER

sup-
" SUPPLIES
up

PRODNR prodtype

PRODUCT

prodname
available_quantity

Degree and Roles

SUPERVISES

Super-
vised
by

EMPLOYEE

BOOKING

Tourist

1

Travel
Agency

17

Cardinalities

Every relationship type can be characterized in terms of
its cardinalities, which specify the minimum or maximum
number of relationship instances that an individual entity
can participate in

Minimum cardinality can be O or 1

— |If O: partial participation

— If 1: total participation or existence dependency

Maximum cardinality can be 1 or N

Relationship types are often characterized by their
maximum cardinalities

— 4 options for binary relationship types: 1:1, 1:N, N:1 and M:N.

Cardinalities

ENROLLED FOR

N\
STUDENT 157 ANy 1.M
ASSIGNED TO
ZN
STUDENT 57—\ 01
MANAGED BY
ZN
EMPLOYEE 1777 \ O.N

COURSE

MASTER THESIS

PROJECT

N:M

1:1

1:N

Relationship Attribute Types

* Relationship type can also have attribute types

* These attribute types can be migrated to one of the
participating entity types in case of a 1:1 or 1:N
relationship type

EMPLOYEE

WORKS ON

PROJECT

Weak Entity Type

* A strong entity type is an entity type that has a key attribute type

* A weak entity type is an entity type that does not have a key
attribute type of its own

— related to owner entity type from which it borrows an attribute type to make
up a key attribute type

0..N A 1.1 ’
Room \/ otel
BELONGS TO

Weak Entity Type

 Weak entity type is always existent dependent
from owner entity type (not vice versal)

@ =

SUPPLIER

ON_ORDER

PURCHASE
ORDER

Ternary Relationship Types

Assume that we have a situation where suppliers can supply products for projects.
A supplier can supply a particular product for multiple projects. A product for a
particular project can be supplied by multiple suppliers. A project can have a
particular supplier supply multiple products. The model must also include the

qguantity and due date for supplying a particular product to a particular project by a
particular supplier.

SUPPLIER

PROJECT

e G
e

PRODUCT

Ternary Relationship Types

SUPPLIER

0..N

0..N

<::> 0..N

CAN SUPPLY

SUPPLIES
<::> O-N_| proJECT
O.N
PRODUCT |21

PRODNR

<i:>

USES

Note: loss of semantics!

Ternary Relationship Types

Say we have two projects: project 1 uses a pencil and a pen, and project 2 uses a
pen. Supplier Peters supplies the pencil for project 1 and the pen for project 2
whereas supplier Johnson supplies the pen for project 1.

SUPPLY
Supplier |Product |Project
Peters Pencil |Project 1
Peters Pen Project 2
Johnson |Pen Project 1
SUPPLIES USES CAN SUPPLY
Supplier |Project Product |Project Supplier |Product
Peters Project 1 Pencil |Project 1 Peters Pencil
Peters Project 2 Pen Project 1 Peters Pen
Johnson |Project 1 Pen Project 2 Johnson |Pen

From the binary relationship types, it is not clear who supplies the pen for
project 1!

25

Ternary Relationship Types

OFFERS
INSTRUCTOR 1.N \/> - SEMESTER

0.N
<> 0.NI" couRsE
QUALIFIED

26

Ternary Relationship Types

SUPPLIER

Tasl

0..N

PRODNR

PRODUCT

SUPPLY

0..N

PROJECT

e

1

Due date

27

Examples of the ER Model

Super-
vised
@ -

0..N

WORKS IN

1..1
pro-|dep-
dep |pro

G o) o

0..1
EMPLOYEE
WORKS ON
N 0.N
0.N
1.1
IN CHARGE OF @
DEPARTMENT

28

Examples of the ER Model

deliv_period

PRODNR

prodname

SUPPLIES

1

0..N

PRODUCT

PURCHASE
ORDER

prodtype
gquantit

29

Limitations of the ER model

* ER model presents a temporary snapshot and cannot model

temporal constraints

— Examples: a project needs to be assigned to a department after one month,
an employee cannot return to a department of which he previously was a
manager, a purchase order must be assigned to a supplier after two weeks,

etc.
 ER model cannot guarantee the consistency across multiple

relationship types
— Examples: an employee should work in the department that he/she
manages, employees should work on projects assigned to departments to
which the employees belong, suppliers can only be assigned to purchase
orders for products they can supply

Limitations of the ER model

e Domains are not included in the ER model

— Examples: hours should be positive; prodtype must be
red, white or sparkling, supstatus is an integer between
0 and 100

* Functions are not included in the ER model

— Examples: calculate average number of projects an
employee works on; determine which supplier charges
the maximum price for a product

Enhanced Entity Relationship (EER) Model

» Specialization/Generalization
* Categorization

* Aggregation

 Examples of the EER Model

* Designing the EER Model

Specialization/Generalization

Specialization refers to the process of defining a set of subclasses of
an entity type

— Example: ARTIST superclass with subclasses SINGER and ACTOR
The specialization process defines an “IS A” relationship

The specialization can then establish additional specific attribute
types for each subclass

— Example: singer can have a music style attribute type

The specialization can also establish additional specific relationship
types for each subclass

— Examples: actor can act in movies, singer can be part of a band

A subclass inherits all attribute types and relationship types from its
superclass

Specialization/Generalization

 Generalization, also called abstraction, is the
reverse process of specialization

— Specialization corresponds to a top-down process of
conceptual refinement

— Generalization corresponds to a bottom-up process of
conceptual synthesis

Specialization/Generalization

S

ARTIST

SINGER

=4,

35

Specialization/Generalization

* The disjointness constraint specifies to what subclasses
an entity of the superclass can belong to

— A disjoint specialization is a specialization whereby an entity can
be a member of at most one of the subclasses

— An overlap specialization is a specialization whereby the same
entity may be a member of more than one subclass
* The completeness constraint indicates if all entities of the
superclass should belong to one of the subclasses or not

— A total specialization is a specialization whereby every entity in
the superclass must be a member of some subclass

— A partial specialization allows an entity to only belong to the
superclass and to none of the subclasses

Specialization/Generalization

) ARTIST

:
A

./a SINGER ACTOR

Specialization/Generalization

) PERSON
t

P

PROFESSOR STUDENT

Specialization/Generalization

* |n a specialization hierarchy, every subclass can only have a single superclass and
inherits the attribute types and relationship types of all its predecessor
superclasses all the way up to the root of the hierarchy

Y PERSON

t

PROFESSOR STUDENT

t

BACHELOR MASTER PHD

Specialization/Generalization

* |n a specialization lattice, a subclass can have multiple
superclasses (multiple inheritance)

VEHICLE

MOTORCYCLE CAR BOAT

TRIKE AMPHIBIAN

Categorization

* A category is a subclass that has several possible superclasses
* Each superclass represents a different entity type

* The category represents a collection of entities that is a subset of
the union of the superclasses

) PERSON COMPANY [

ACCOUNT
HOLDER

Categorization

* Inheritance in the case of categorization corresponds to an entity inheriting only
the attributes and relationships of that superclass it is a member of (selective

inheritance)

* A categorization can be total or partial
— Total: all entities of the superclasses belong to the subclass
— Partial: not all entities of the superclasses belong to the subclass

~ PERSON COMPANY [

ACCOUNT
HOLDER

Note: total categorization can also be represented as a specialization/generalization!
42

Aggregation

Entity types that are related by a particular relationship type can be
combined or aggregated into a higher-level aggregate entity type

Aggregation is especially useful when the aggregate entity type has
its own attribute types and/or relationship types

1.M 0..N

CONSULTANT PROJECT

PARTICIPATION

1.1

CONTRACT

Examples of the EER Model

0..1

MANAGER

AY

“* MANAGES

ALLOCATION

DEPARTMENT

1.1
pro-|dep-
1.1 i 0..N

PROJECT

IN CHARGE OF

44

Designing the EER Model

0 N o U

|dentify the entity types
|ldentify the relationship types and assert their degree

Assert the cardinality ratios and participation constraints (total versus partial
participation)

Ildentify the attribute types and assert whether they are simple or composite,
single or multiple valued, derived or not

Link each attribute type to an entity type or a relationship type
Denote the key attribute type(s) of each entity type
ldentify the weak entity types and their partial keys

Apply abstractions such as generalization/specialization, categorization and
aggregation

Assert the characteristics of each abstraction such as disjoint or overlapping,
total or partial

UML Class Diagram

Origin

Recap of Object Orientation
Classes

Variables

Access Modifiers

Associations
Specialization/Generalization
Aggregation

UML Class Diagram Example
Advanced UML Modeling Concepts
UML Class Diagram versus EER

Origin

The Unified Modeling Language (UML) is a modeling language
which assists in the specification, visualization, construction and
documentation of artifacts of a software system

UML was accepted as a standard by the Object Management Group
(OMG) in 1997 and approved as an ISO standard in 2005

Most recent version is UML 2.5, introduced in 2015

UML offers various diagrams such as use case diagrams, sequence
diagrams, package diagrams, deployment diagrams, etc.

From a database modeling perspective, the class diagram is the
most important

Recap of Object Orientation

* Aclassis a blueprint definition for a set of objects
— Compare to entity type in ER

* Conversely, an object is an instance of a class
— Compare to entity in ER

e Object is characterized by both variables and
methods

— Variables correspond to attribute types and variable
values to attributes in the ER

— No ER equivalent for methods

Recap of Object Orientation

 Example class Student
— Objects: Bart, Wilfried, Seppe
— Example variables: student’s name, gender and birthdate

— Example methods: calcAge, isBirthday,
hasPassed(courselD)

* |Information hiding (a.k.a. encapsulation) states that
the variables of an object can only be accessed
through either getter or setter methods

— getter method is used to retrieve the value of a variable

— setter method assigns a value to a it

Recap of Object Orientation

* Inheritance

— A superclass can have one or more subclasses which
inherit both the variables and methods from the
superclass

 Method overloading

— Various methods in the same class can have the same
name, but a different number or type of input
arguments

Classes

SUPPLIER

SUPNR
Supname

getSUPNR
setSUPNR(newSupNR)
getSupname
setSupname(newSupname)

51

Variables

Variables with unique values (™

SUPPLIER

key attribute types in ER) are not
directly supported in UML

UML provides a set of primitive
types such as String, Integer, and
Boolean

It is also possible to define your

SUPNR: Integer

first name: String

fast name: String
address: Address_Domain
email: String [0..4]

status: Integer

date of birth: Date

lage: Integer

own data types or domains

Composite/Multi-valued/Derived
variables

getSUPNR
setSUPNR(newSupNR)
getSupname
setSupname(newSupname)

Access Modifiers

* Access modifiers can be used to specify who can have
access to a variable or method

* Three types

— private (denoted by ‘—‘): variable or method can only be
accessed by the class itself

— public (denoted by ‘+’): variable or method can be accessed by
any other class

— protected (denoted by ‘#’): variable or method can be accessed
by both the class and its subclasses

* |tis recommended to declare all variables as private
(information hiding)

Access Modifiers

SUPPLIER

- SUPNR: Integer

- first name: String

- fast name: String

- address: Address_Domain
- email: String [0..4]

- status: Integer

- date of birth: Date

- /age: Integer

+ getSUPNR

+ setSUPNR(newSupNR)

+ getSupname

+ setSupname(new Supname)

54

Associations

An association corresponds to a relationship type
in ER

Multiple associations can be defined between the
same classes

A particular occurrence of an association is
referred to as a link

An association is characterized by its multiplicities
(cardinalities in the ER model)

Associations

UML class diagram ER model
multiplicity cardinality
* 0..N

0..1 0..1

1..% 1..N

Associations

e Association Class
 Unidirectional versus Bidirectional Association
e Qualified Association

Association Class

* |[n case an association has variables and/or

methods on its own, it can be modelled as an

association class

SUPPLIER

- SUPNR: Integer
- first name: String

PRODUCT

+ getSUPNR

+ setSUPNR(newSupNR)

+ getSupname

+ setSupname(newSupname)

- fast name: String *

SUPPLIES

- PRODNR: Integer
- Prodname: String

- price: Integer
- deliv_period: Integer

+ getPRODNR

+ setPRODNR(newPRODNR)
+ getProdname

+ setProdname(newProdname)

+ getPrice
+ setPrice(newPrice)

58

Unidirectional versus Bidirectional Association

e Associations can be augmented with direction reading arrows,
which specify the direction of querying or navigating through it

SUPPLIER PURCHASE ORDER
- SUPNR: Integer - PONR: Integer
- first name: String ON_ORDER »| - POdate: Date
Unidirectional Sk .
+ getSUPNR + getPONR
+ setSUPNR(newSupNR) + setPONR(newPONR)
+ getSupname + getPOdate
+ setSupname(newSupname) + setPOdate(newPOdate)
SUPPLIER PRODUCT
. . . - SUPNR: Integer - PRODNR: Integer
Bidirectional
- fast name: String % i %
+ getSUPNR SUPPLIES + getPRODNR
+ setSUPNR(newSupNR) + setPRODNR(newPRODNR)
+ getSupname - price: Integer + getProdname
+ setSupname(new Supname) - deliv_period: Integer + setProdname(newProdname)

+ getPrice
+ setPrice(newPrice)

Qualified Association

* A qualified association is a special type of

association that uses a qualifier to further refine
the association

* The qualifier specifies one or more variables that
are used as index key for navigating from the
qgualified class to the target class

— reduces the multiplicity of the association because of
this extra key

Qualified Association

TEAM

TEAM

1.1

position

PLAYS AT
N/ O.N [

PLAYS AT
PLAYER

1

0..1

61

Qualified Association

* Qualified associations can be used to represent

weak entity types

Room

ROOM

0..N <>

BELONGS TO

BELONGS TO

1

1

HOTEL

0.1

RNR

1

- Hotel name: String

62

Specialization/Generalization

ARTIST

A {partial; overlap}

SINGER ACTOR

Aggregation

* Aggregation represents a composite to part relationship
whereby a composite class contains a part class

 Two types in UML: shared and composite aggregation
* Shared aggregation (a.k.a. aggregation)

— part object can simultaneously belong to multiple composite
objects

— maximum multiplicity at the composite side is undetermined

— part object can also occur without belonging to a composite
object

— loose coupling

Aggregation

 Composite aggregation (a.k.a. composition)
— the part object can only belong to one composite
— maximum multiplicity at the composite side is 1
— minimum multiplicity can be either 1 or O
— tight coupling

Aggregation

Shared Aqggregation

COMPANY CONSULTANT

0> ,,

Composite Aggregation

BANK ACCOUNT

’1 1.*

UML Example

1.*

LOCATION

- Lname: String

+ getname

1::1

1.~ Works In 1
EMPLOYEE DEPARTMENT
1 0..1
- SSN: Integer I - DNR: Integer
- Ename: String 1 - Dname: String
- Address:Address_Domain Manages
+ getDNR
- StartDate: Date + setDNR(newNR)
+ getSSN
supervisey + setSSN(newSSN)
) 1
I
0.4 1
SHpRrisar Works On In Charge Of
- Hours: Integer
x v *
PROJECT
- PNR:Integer
- Pname: String
+ getPNR

+ setPNR(newPNR)

67

Advanced UML Modeling Concepts

* Changeability property
* Object Constraint Language (OCL)
* Dependency relationship

Changeability property

* The changeability property specifies the type of operations which are
allowed on either variable values or links

e Three common choices
— default which allows any type of edit

— addOnly which only allows additional values or links to be added (so no
deletions)

— frozen which allows no further changes once the value or link is established

SUPPLIER PURCHASE ORDER

- SUPNR: Integer {frozen} - PONR: Integer {frozen}
- first name: String ON_ORDER N - POdate: Date
- fast name: String i

- languages: String [0..4] {addOnly} 1.1 *
. {addOnly}
+ getPONR
+ getSUPNR + setPONR(newPONR)
+ setSUPNR(newSupNR) + getPOdate

+ getSupname + setPOdate(newPOdate)

Object Constraint Language (OCL)

* The Object Constraint Language (OCL) can be used
to specify various types of constraints in a
declarative way
— no control flow or procedural code is provided

— can be used to specify invariants for classes, pre- and
post-conditions for methods, to navigate between
classes, or to define constraints on operations

* See http://www.omg.org/spec/OCL/

http://www.omg.org/spec/OCL/

Object Constraint Language (OCL)

e A class invariant is a constraint which holds for all
objects of a class

— Example: SUPPLIER: SUPSTATUS>100

* Pre- and post-conditions on methods must be true
when a method either begins or ends

— Example: before the method withdrawal can be
executed, the balance must be positive. After it has
been executed, the balance must still be positive.

Object Constraint Language (OCL)

workers works_in
EMPLOYEE = DEPARTMENT
™ 1

- SSN: Integer - DNR: Integer

- Ename: String - Dname: String
+ getDNR
+ setDNR(newNR)

+ getSSN managed by manages| ..

+ setSSN(newSSN) 1 0 1

* Constraint: manager of a department should be at least 10
years employed

Context: Department

invariant: self.managed by.yearsemployed>10

Object Constraint Language (OCL)

workers works_in
EMPLOYEE = DEPARTMENT
™ 1
- SSN: Integer - DNR: Integer
- Ename: String - Dname: String
+ getDNR
+ setDNR(newNR)
+ getSSN managed by manages| ..
+ setSSN(newSSN) 1 0 1

* A department should have at least 20 employees.
Context: Department
invariant: self.workers-size()>20

Object Constraint Language (OCL)

EMPLOYEE | vorkers Works—’f DEPARTMENT
1..*

- SSN: Integer

- DNR: Integer
- Ename: String

- Dname: String

+ getDNR
+ setDNR(newNR)

+ getSSN managed by manages
+ setSSN(newSSN) 1 0.1

* Constraint: A manager of a department must also work in
the department

Context: Department

Invariant: self.managed by.works in=self

Dependency Relationship

* Dependency defines a ‘using’ relationship which
states that a change in the specification of a UML
modeling concept may affect another modeling

concept that uses it

EMPLOYEE COURSE
- SSN: Integer - CNR: Integer
- Ename: String - Cname: String
_____________ B
+ getCNR

+ setCNR(newCNR)
+ getSSN
+ setSSN(newSSN
+ tookCourse(CNR)

UML Class Diagram versus EER

UML class diagram (EER model

Class Entity type
Object Entity

Variable Attribute type
Variable value Attribute
Method -

Association Relationship type
Link Relationship

UML versus EER

UML class diagram

EER model

Qualified Association

Weak entity type

Specialisation/Generalisation

Specialisation/Generalisation

Aggregation Aggregation (Composite/Shared)
OCL -
Multiplicity | * Cardinality 0..N

0..1 0..1

1..* 1..N

1 1..1

Conclusions

Phases of Database Design

Entity Relationship (ER) model

Enhanced Entity Relationship (EER) model
UML Class Diagram

More information?

- W
(! Ll { E

JUMP INTU 14HE E% _ VING‘IURL

e S .
N SN

OFDATABASE MA GEME»

Princigles of Database,
manqement information to

bdse design"and modeling, database systems; data storage, and the'evolving world
of data warehoising, governance and more. Designed for those studying datal
management for information management or computer science, this illustrates
textbook has a we" ba[anced theory practice focus and covers the essential tapics,
from blished ies up to recent trends like Big Data, NoSQL, and
analytics. On-going case studies, drill-down boxes that reveal deeper insights on key
topics, retention questions at the end of every section of a chapter, and connections
boxes that show the relationship b hroughout the text are included to
provide the practical tools to get started in database management.

with the

KEY FEATURES INCLUDE:
* Full-color illustrations throughout the text.

* Extensive coverage of important trending topics, including data warehousing, business
intelligence, data integration, data quality, data governance, Big Data and analytics.

An online playground with diverse environments, including MySQL for querying;
MongoDB; Neodj Cypher; and a tree structure visualization environment.

Hundreds of examples to illustrate and clarify the concepts discussed that can be
reproduced on the book’s companion online playground.

Case studies, review questions, problems and exercises in every chapter.

Additional cases, p: and it in the di

Online Resources
www.cambridge.org/

Instructor’s resources

M Solutions manual
M Code and data for examples

Cover illustration: @Chen Hanquan / DigitalVision / Getty lmages.
Cover design: Andrew Ward.

9"781107"186125

il)
1d and apply the fund: | col -

>

SN3S3 V8 ONY
T3IHYIWAT

I1IN0YE NIONYA

|

bl

<2
O
—
m
w
o)
M

INIWIIVNVIN 3SVE

.

WILFRIED LEMAHIEU
SEPPE VANDEN BROUCKE
BART BAESENS

PRINCIPLES OF
DATABASE

MANAGEMENT

THE PRACTICAL GUIDE TO STORING. MANAGING
AND ANALYZING BIG AND SMALL DAT&

www.pdbmbook.co

http://www.pdbmbook.com/

